Functional Depletion of Mahogunin by Cytosolically Exposed Prion Protein Contributes to Neurodegeneration

نویسندگان

  • Oishee Chakrabarti
  • Ramanujan S. Hegde
چکیده

The pathways leading from aberrant Prion protein (PrP) metabolism to neurodegeneration are poorly understood. Some familial PrP mutants generate increased (Ctm)PrP, a transmembrane isoform associated with disease. In other disease situations, a potentially toxic cytosolic form (termed cyPrP) might be produced. However, the mechanisms by which (Ctm)PrP or cyPrP cause selective neuronal dysfunction are unknown. Here, we show that both (Ctm)PrP and cyPrP can interact with and disrupt the function of Mahogunin (Mgrn), a cytosolic ubiquitin ligase whose loss causes spongiform neurodegeneration. Cultured cells and transgenic mice expressing either (Ctm)PrP-producing mutants or cyPrP partially phenocopy Mgrn depletion, displaying aberrant lysosomal morphology and loss of Mgrn in selected brain regions. These effects were rescued by either Mgrn overexpression, competition for PrP-binding sites, or prevention of cytosolic PrP exposure. Thus, transient or partial exposure of PrP to the cytosol leads to inappropriate Mgrn sequestration that contributes to neuronal dysfunction and disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RML prions act through Mahogunin and Attractin-independent pathways

While the conversion of the normal form of prion protein to a conformationally distinct pathogenic form is recognized to be the primary cause of prion disease, it is not clear how this leads to spongiform change, neuronal dysfunction and death. Mahogunin ring finger-1 (Mgrn1) and Attractin (Atrn) null mutant mice accumulate vacuoles throughout the brain that appear very similar to those associa...

متن کامل

Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein

Protein translocation into the endoplasmic reticulum is mediated by signal sequences that vary widely in primary structure. In vitro studies suggest that such signal sequence variations may correspond to subtly different functional properties. Whether comparable functional differences exist in vivo and are of sufficient magnitude to impact organism physiology is unknown. Here, we investigate th...

متن کامل

Ubiquitin-mediated regulation of the E3 ligase GP78 by MGRN1 in trans affects mitochondrial homeostasis.

Cellular quality control provides an efficient surveillance system to regulate mitochondrial turnover. This study elucidates a new interaction between the cytosolic E3 ligase mahogunin RING finger 1 (MGRN1) and the endoplasmic reticulum (ER) ubiquitin E3 ligase GP78 (also known as AMFR). Loss of Mgrn1 function has been implicated in late-onset spongiform neurodegeneration and congenital heart d...

متن کامل

Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation

The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...

متن کامل

Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity

Impairment in the elimination of misfolded proteins generates cellular toxicity and leads to various late-onset neurodegenerative diseases. However, the mechanisms by which cells recognize abnormal cellular proteins for selective clearance remain unknown. Lack of the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase in mice causes the development of age-dependent spongiform neurodegeneration....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2009